Closing Tue:	13.3(part 2), 13.4
Closing Thu:	14.1, 14.3 (part 1)

14.1/14.3 Introduction to Multivariable Functions, Surfaces, and Partial Derivatives

Def'n: A function, *f*, of two variables is a rule that assigns a number for each input (x,y). We write

z = f(x,y)

We sometimes write $f: \mathbb{R}^2 \to \mathbb{R}$ to indicate

that the inputs to *f* have 2-dimensions and the output has one dimension.

The set of allowable inputs is called the **domain**. The domain will be a region in 2-dimensions. The set of possible outputs is called the **range**.

Domain:

Any question that asks "find the domain" is simply asking you if you know your functions well enough to understand when they are not defined.

Appears in the	Restriction
Function	
\sqrt{BLAH}	BLAH ≥ 0
STUFF/BLAH	BLAH ≠ 0
In(BLAH)	BLAH > 0
sin ⁻¹ (BLAH)	$-1 \le BLAH \le 1$
and other trig	

Examples: Sketch the domain of (1) $f(x, y) = \ln(y - x)$

(2)
$$g(x, y) = \sqrt{y + x^2}$$

Visualizing Surfaces

The basic tool for graphing surfaces is **traces**. When z = f(x,y), we think of z as height and we typically look at traces given by fixed values of z first.

We call these traces **level curves**, because each curve represents all the points at the same height (level) on the surface.

A collection of level curves is called a **contour map** (or **elevation map**).

Contour Map (Elevation Map) of Mt. St. Helens from 1979 (before it erupted):

Examples:

Level Curves for
$$z = f(x, y) = \frac{1}{1+x^2+y^2}$$

at z = 1/10, 2/10, ..., 9/10, 10/10

Graph of
$$z = f(x, y) = \frac{1}{1 + x^2 + y^2}$$

Graph of z = sin(x) - y

