Closing Tue: 13.3(part 2), 13.4
Closing Thu: $\quad 14.1,14.3$ (part 1)

14.1/14.3 Introduction to Multivariable

 Functions, Surfaces, and Partial DerivativesDef'n: A function, f, of two variables is a rule that assigns a number for each input (x, y). We write

$$
z=f(x, y)
$$

We sometimes write $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ to indicate that the inputs to f have 2 -dimensions and the output has one dimension.

The set of allowable inputs is called the domain. The domain will be a region in 2dimensions. The set of possible outputs is called the range.

Domain:

Any question that asks "find the domain" is simply asking you if you know your functions well enough to understand when they are not defined.

Appears in the Function	Restriction
$\sqrt{B L A H}$	$\mathrm{BLAH} \geq 0$
$\mathrm{STUFF} / \mathrm{BLAH}$	$\mathrm{BLAH} \neq 0$
$\ln (\mathrm{BLAH})$	$\mathrm{BLAH}>0$
$\sin ^{-1}$ (BLAH)	$-1 \leq \mathrm{BLAH} \leq 1$
and other trig...	

Examples:

Sketch the domain of
(1) $f(x, y)=\ln (y-x)$

(2) $g(x, y)=\sqrt{y+x^{2}}$

The basic tool for graphing surfaces is traces. When $z=f(x, y)$, we think of z as height and we typically look at traces given by fixed values of z first.

We call these traces level curves, because each curve represents all the points at the same height (level) on the surface.

A collection of level curves is called a contour map (or elevation map).

Contour Map (Elevation Map) of Mt. St. Helens from 1979 (before it erupted):

Examples:

Level Curves for $z=f(x, y)=\frac{1}{1+x^{2}+y^{2}}$ at $z=1 / 10,2 / 10, \ldots, 9 / 10,10 / 10$

Graph of $z=f(x, y)=\frac{1}{1+x^{2}+y^{2}}$

Graph of $z=\sin (x)-y$

